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ABSTRACT: Electroreduction of nitrate (NO3
−) to ammonia (NH3) is an environmentally friendly route for NH3 production,

serving as an appealing alternative to the Haber−Bosch process. Recently, various noble metal-based electrocatalysts have been
reported for electroreduction of NO3

−. However, the application of pure metal electrocatalysts is still limited by unsatisfactory
performance, owing to the weak adsorption of nitrogen-containing intermediates on the surface of pure metal electrocatalysts. In this
work, we report thiol ligand-modified Au nanoparticles as the effective electrocatalysts toward electroreduction of NO3

−. Specifically,
three mercaptobenzoic acid (MBA) isomers, thiosalicylic acid (ortho-MBA), 3-mercaptobenzoic acid (meta-MBA), and 4-
mercaptobenzoic acid (para-MBA), were employed to modify the surface of the Au nanocatalyst. During the NO3

− electroreduction,
para-MBA modified Au (denoted as para-Au/C) displayed the highest catalytic activity among these Au-based catalysts. At −1.0 V
versus reversible hydrogen electrode (vs RHE), para-Au/C exhibited a partial current density for NH3 of 472.2 mA cm−2, which was
1.7 times that of the pristine Au catalyst. Meanwhile, the Faradaic efficiency (FE) for NH3 reached 98.7% at −1.0 V vs RHE for para-
Au/C. The modification of para-MBA significantly improved the intrinsic activity of the Au/C catalyst, thus accelerating the kinetics
of NO3

− reduction and giving rise to a high NH3 yield rate of para-Au/C.
KEYWORDS: Ammonia synthesis, NO3− electroreduction, Au nanoparticles, thiol ligand modification, electronic structure

■ INTRODUCTION

As one of the most fundamental industrial products, ammonia
(NH3) is not only an indispensable chemical in fertilizer,
medicine, dye, and other industries but also an important
carbon-free energy storage medium.1−3 Currently, the
predominant method of NH3 synthesis, the Haber−Bosch
process, requires extreme reaction conditions of high temper-
ature (400−500 °C) and high pressure (150−300 bar) with
only 10−20% conversion efficiency.4−6 It is reported that the
annual energy consumption for NH3 synthesis accounts for 1−
2% of the total global energy supply accompanied by about
1.5% of the global carbon emissions, leading to significant
damage to the natural environment.7−11 Therefore, a clean and
economical route for NH3 production is urgently needed in
pursuit of a sustainable chemical industry.12−15

Over the past few decades, the electroreduction of nitrate
(NO3

−) to NH3 stands out as one of the desirable pathways for
NH3 production as an alternative to the Haber−Bosch
process.16−20 Besides, nitrate pollution in water has long
been a serious environmental issue all over the world. The high
concentration of nitrate in the water body is one of the main
reasons for aquatic ecosystem damage and the increase of
certain human diseases.20−22 Utilizing NO3

− as the nitrogen
source for NH3 synthesis not only satisfies the tremendous
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demand of NH3 but also helps mediate the disrupted nitrogen
cycle.3,22 Recently, various metal-based electrocatalysts such as
Ir,23 Pd,24 Ru,25 Ag,26 and Au27 have been reported for NO3

−

electroreduction. However, the application of pure metal
electrocatalysts is still limited by unsatisfactory performance
owing to the weak adsorption of nitrogen-containing
intermediates on the surface of pure metal electrocatalysts.28,29

Thus, developing an effective method of modulating the
electronic structure is crucial to enhancing the intrinsic activity

of pristine catalysts. Among various strategies to manipulate
the electronic structures of electrocatalysts, ligand modification
is considered especially appealing due to its simplicity and
effectiveness in tuning the electronic properties of the catalytic
active sites.30,31 For instance, the ligand X (X = O, OH, F, Cl,
Br, and I) axially ligated to Fe−N4 notably improved the
kinetics of the rate-determining step in NO3

− reduction, owing
to the change of the d-band center spin state gap of Fe3d.32

Besides, pyridine functionalization can remarkably augment

Figure 1. Schematic illustration of the synthesis of thiol ligand-modified Au/C. The gold, gray, red, brown, and white spheres represent Au, C, O, S,
and H atoms, respectively.

Figure 2. (a) TEM image of para-Au/C. (b) XRD, (c) Au 4f XPS, and (d) S 2p XPS of pristine Au/C, ortho-Au/C, meta-Au/C, and para-Au/C.
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the activity of Ag nanosheet toward NO3
− reduction due to the

promoted adsorption of NO3
−.28 As such, it is highly desirable

to explore the ligand effect on metal-based catalysts toward the
electroreduction of NO3

− through the modification of thiol
ligands.

In this work, we report a thiol ligand modification method to
enhance the performance of Au nanoparticles for the
electroreduction of NO3

− to NH3. We employed three
mercaptobenzoic acid (MBA) isomers, including thiosalicylic
acid (ortho-MBA), 3-mercaptobenzoic acid (meta-MBA), and
4-mercaptobenzoic acid (para-MBA), to modify Au nano-
particles (Figure 1). Para-MBA modified Au catalyst (denoted
as para-Au/C) exhibited the best performance among these
Au-based catalysts. The partial current density for NH3 (jNHd3

)
of para-Au/C reached 472.2 mA cm−2 with a Faradaic
efficiency (FE) up to 98.7% at the potential of −1.0 V versus
reversible hydrogen electrode (vs RHE). Besides, the highest
yield rate of NH3 for para-Au/C was 39.7 mg h−1 cm−2 at −1.0
V vs RHE, which was 1.7 times that of pristine Au catalyst
(denoted as pristine Au/C). The modification of para-MBA
significantly improved the intrinsic activity of the Au/C
catalyst, thus accelerating the kinetics of NO3

− reduction and
giving rise to a high NH3 yield rate of para-Au/C.

■ RESULTS AND DISCUSSION

Synthesis and Characterizations of Thiol-Modified Au
Nanoparticles

The Au nanoparticles were fabricated by chemical reduction of
HAuCl4 using NaBH4, followed by immobilization on carbon
black and soaking in MBA solutions.33 Au nanoparticles
modified by ortho-MBA, meta-MBA, and para-MBA were
denoted as ortho-Au/C, meta-Au/C, and para-Au/C,
respectively. For comparison, a pristine Au/C catalyst was

prepared in the same process without the soaking step. The
transmission electron microscopy (TEM) image of pristine
Au/C catalyst clearly depicted the spherical morphology of Au
nanoparticles, which were uniformly dispersed on carbon black
(Figure S1). After the thiol ligand modification, the
morphology and size distribution of ortho-Au/C, meta-Au/
C, and para-Au/C displayed no obvious change (Figures 2a,
S2, and S3). The X-ray diffraction (XRD) patterns of the
catalysts revealed that the metallic Au exhibited a face-centered
cubic (fcc) crystal structure with distinct diffraction peaks at
38.2°, 44.4°, 64.6°, and 77.6°, corresponding to the (111),
(200), (220), and (311) facets, respectively (Figure 2b).33 In
this case, the phase structure of the Au nanoparticles did not
alter significantly after the ligand modification. The high
resolution transmission electron microscopy (HRTEM) image
of para-Au/C delivered interplanar spacings of 2.36, 2.03, and
1.44 Å, which corresponded to the (111), (200), and (220)
facets of Au, respectively (Figure S4a). The selected area
electron diffraction (SAED) pattern of para-Au/C exhibited
circular rings corresponding to (111), (200), and (222) facets
of Au, revealing its polycrystalline nature (Figure S4b). The
result of energy-dispersive X-ray spectroscopy (EDS) mapping
displayed the uniform distribution of the S element around Au
nanoparticles, indicating the accurate attachment of para-MBA
to Au atoms in para-Au/C (Figure S5). The X-ray photo-
electron spectroscopy (XPS) of Au 4f spectrum of pristine Au/
C exhibited two distinct peaks at 84.4 and 88.1 eV,
corresponding to 4f 7/2 and 4f5/2 of metallic Au species,
respectively (Figure 2c).33 Notably, the Au 4f 7/2 XPS peaks of
modified Au/C shifted by ∼0.05 eV to higher binding energy,
which was derived from the electron interaction between Au
and S.34 Moreover, the S 2p XPS spectrum of pristine Au/C
showed no signal of S (Figure 2d). In contrast, the modified
Au/C revealed two peaks at around 164 and 165 eV,

Figure 3. LSV of (a) pristine Au/C, (b) ortho-Au/C, (c) meta-Au/C, and (d) para-Au/C in 1.0 M KOH with/without 0.1 M KNO3 electrolyte.
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respectively corresponding to S 2p3/2 and S 2p1/2 spectra.36

Compared with the pristine thiol ligands, the shift of S 2p3/2
peaks for the modified Au/C catalysts followed the order of
para-Au/C > meta-Au/C > ortho-Au/C (Figure S6). In this
case, the interaction between Au and S for para-Au/C was the
strongest among the modified Au/C catalysts, inducing the
strongest regulation of the electronic structure of para-Au/C.
Catalytic Performance of NO3

− Electroreduction

The electrochemical catalytic performance was measured
under ambient conditions in a H-cell. The linear sweep
voltammetry (LSV) experiments of Au/C catalysts were
conducted in 1.0 M KOH electrolyte with and without 0.1
M KNO3 (Figure 3). In LSV tests, all four Au/C catalysts
delivered much larger current densities in 1.0 M KOH + 0.1 M
KNO3 electrolyte than those in 1.0 M KOH alone at the same
potential, suggesting that the kinetics of NO3

− electroreduction
was much faster than that of H2 evolution.35 Besides, the
modified Au/C catalysts yielded impressively higher current
densities than pristine Au/C, meaning that thiol ligand
modification significantly enhanced the catalytic activity of
the Au/C catalyst. Among the four catalysts, para-Au/C
delivered the highest current density in 1.0 M KOH + 0.1 M
KNO3 electrolyte, implying its highest activity toward NO3

−

electroreduction. Notably, compared with pristine Au/C, the
increment of current densities for para-Au/C in the KOH
electrolyte with KNO3 was considerably greater than those in
KOH alone, meaning that the ligand effect had a more
pronounced influence on electroreduction of NO3

− compared
with its impact on H2 evolution.

To evaluate the catalytic performance of each Au/C catalyst,
we conducted electrolysis experiments at different applied

potentials for 1 h. The concentration of NH3 was determined
using the indophenol blue method by UV−vis (Figure S7).
Figure 4a illustrates the partial current densities for NH3 (jNHd3

)
on four Au/C catalysts. Compared with pristine Au/C, all of
the modified Au/C catalysts demonstrated a substantial
increment of jNHd3

. Among these modified catalysts, para-Au/
C displayed the highest jNHd3

, reaching 472.2 mA cm−2 at the
potential of −1.0 V vs RHE. Figure 4b shows the FE for NH3
of Au/C catalysts during electrolysis. Compared with pristine
Au/C, all of the modified catalysts exhibited increased FE for
NH3 production. Especially, para-Au/C displayed a maximal
FE of 99.3% at −0.8 V vs RHE. Figure 4c depicts the NH3
yield rates of Au/C catalysts at different applied potentials.
Remarkably, para-Au/C exhibited the highest NH3 yield rate
among the three modified catalysts, reaching 39.7 mg h−1 cm−2

at −1.0 V vs RHE. Moreover, the para-Au/C catalyst
outperformed most of the reported Au-based electrocatalysts,
demonstrating the effectivity of thiol modification as a simple
strategy for boosting the catalystic performance (Table S1).
Besides, the investigation into the effect of Au loading and
soaking time on catalytic performance demonstrated that the
optimized Au loading and soaking time were 25 wt % and 1 h,
respectively (Figures S8 and S9). The stability test for para-
Au/C catalyst was conducted in 1.0 M KOH + 0.1 M KNO3
electrolyte at −1.0 V vs RHE (Figure 4d). In 10 successive
reaction rounds, para-Au/C showed negligible performance
degradation, exhibiting only a 6.5% decay for the yield rate of
NH3. The TEM image and XRD pattern of para-Au/C after
cyclic electrolysis displayed no obvious change, representing
the structural robustness of para-Au/C (Figure S10). In
addition, a 15N isotope-labeling experiment was conducted to

Figure 4. (a) jNHd3
, (b) FE, and (c) yield rate of NH3 of pristine Au/C, ortho-Au/C, meta-Au/C, and para-Au/C at different applied potentials. (d)

The cyclic electrolysis test of para-Au/C at −1.0 V vs RHE.
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further quantify the product (Figure S11). The FE for NH3 at
−0.6 V vs RHE determined by 1H NMR was approximated to
the results detected via the UV−vis method (Figure S12).
These results verified that the generated NH3 originated from
the electroreduction of NO3

−.
To clarify the intrinsic activity of modified Au/C, the

double-layer capacitance (Cdl) was measured to calculate the
electrochemical active surface areas (ECSAs) of Au/C
catalysts.36 Cyclic voltammetry (CV) of Au/C catalysts was
measured at different scan rates, ranging from 20 to 100 mV
s−1 (Figure S13). The charging current densities at each scan
rate were used to determine the Cdl of the working electrodes
(Figure S14).37 The Cdl of pristine Au/C, ortho-Au/C, meta-
Au/C, and para-Au/C was calculated to be 11.6, 11.7, 11.4,
and 11.7 mF cm−2, respectively, meaning that the four catalysts
had similar ECSAs. Then we normalized the jNHd3

based on
ECSA.38 As shown in Figure 5a, para-Au/C delivered the
highest normalized jNHd3

among the four Au/C catalysts,
indicating that the modification of para-MBA to Au nano-
particles significantly improved the intrinsic activity. Figure
S15 displays the electrochemical impedance spectroscopy
(EIS) of Au/C catalysts. As shown in the high frequency
region of the Nyquist plot, para-Au/C had the lowest charge
transfer resistance (Rct) among these Au/C catalysts,
suggesting that the charge transfer on para-Au/C was the
fastest.39 To evaluate the kinetics of NO3

− reduction, we
calculated the exchange current densities (j0) of each Au/C
catalyst based on Tafel plots (Figure 5b). Obviously, the values
of j0 followed the order of para-Au/C > meta-Au/C > ortho-
Au/C > pristine Au/C. According to the Butler−Volmer
equation, the largest j0 of para-Au/C represented the fastest
kinetics of NO3

− reduction among all four catalysts, thus giving
rise to its highest catalytic activity.40−42 To further elucidate
the effect of the ligand on Au/C, density functional theory
(DFT) calculations were performed to evaluate the adsorption
of NO3

− on pristine Au (111) and para-MBA modified Au
(111) (donated as pristine Au and para-Au), respectively
(Figure S16). Compared with pristine Au, para-Au exhibited a
lower ΔGads for NO3

−, indicating that para-Au possessed
stronger binding with NO3

−. In this case, the boosted catalytic
performance of para-Au could be attributed to the facilitated
adsorption of NO3

− on the surface of para-Au.

■ CONCLUSION
In this work, we developed a simple method of thiol ligand
modification to promote the catalytic performance of Au
catalyst toward electroreduction of NO3

− to NH3. Among all
the modified Au/C catalysts, para-Au/C achieved the jNHd3

of
472.2 mA cm−2 with the FE up to 98.7% at the potential of
−1.0 V vs RHE. Remarkably, the highest yield rate of NH3 for
para-Au/C reached up to 39.7 mg h−1 cm−2 at −1.0 V vs RHE,
which was 1.7 times that of pristine Au/C. Para-MBA
modification significantly improved the intrinsic activity of
Au/C catalyst, thus accelerating the kinetics of NO3

− reduction
and giving rise to the high NH3 yield rate of para-Au/C. This
work offers an effective chemical modification strategy for
guiding the rational design of noble-metal-based electro-
catalysts toward NO3

− reduction.
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