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Abstract—Content-addressable memory (CAM) is a type of fast mem-
ory unique in its ability to perform parallel searches of stored data based
on content rather than specific memory addresses. They have been used
in many domains, such as networking, databases, and graph processing.
Field-programmable gate arrays (FPGAs) are an attractive platform for
implementing CAMs because of their low latency, reconfigurability, and
energy-efficient nature. However, such implementations also face signif-
icant challenges, including high resource utilization, limited scalability,
and suboptimal performance due to the extensive use of look-up tables
(LUTs) and block RAMs (BRAMs). These issues stem from the inherent
limitations of FPGA architectures when handling the parallel operations
required by CAMs, often leading to inefficient designs that cannot meet
the demands of high-speed, data-intensive applications. To address these
challenges, we propose a novel configurable CAM architecture that
leverages the digital signal processing (DSP) blocks available in modern
FPGAs as the core resource. By utilizing DSP blocks’ data storage and
logic capabilities, our approach enables configurable CAM architecture
with efficient multi-query support while significantly reducing search
and update latency for data-intensive applications. The DSP-based CAM
architecture offers enhanced scalability, higher operating frequency, and
improved performance compared to traditional LUT and BRAM-based
designs. In addition, we demonstrate the effectiveness of our proposed
CAM architecture with a triangle counting application on real graphs.
This innovative use of DSP blocks also opens up new possibilities for high-
performance, data-intensive applications on FPGAs. Our proposed design
is open-sourced at: https://github.com/Xtra-Computing/DSP_CAM/.

Index Terms—Content addressable memory, digital signal processor,
FPGA, scalability, high-performance

I. INTRODUCTION

Content-addressable memory (CAM) performs fast content match-
ing across all stored entries in a single operational cycle [8], [12],
[16]. Unlike traditional memory, which requires sequential access or
indexing methods that introduce significant latency, CAM’s process-
ing pattern significantly accelerates search-intensive operations com-
mon in data-intensive applications such as graph analytics, network
processing, and database query acceleration [5].

Field-programmable gate arrays (FPGAs) are widely adopted as
accelerator platforms for data-intensive applications, driving the de-
mand for CAM designs on it. Due to the reconfigurability advantage,
the CAM implementations on FPGA emulate all CAM types, includ-
ing binary, ternary, and range-matching CAMs.

Current CAM implementations on FPGAs are typically based on
Lookup Tables (LUTs), Block RAMs (BRAMs), or hybrid designs
combining both, but all face significant challenges, especially in
scalability and performance, as shown in Figure 1. The main chal-
lenge of LUT-based CAMs is on how to achieve very good search
performance while efficiently utilizing the LUT resources [7], [18].
While LUTRAM-based designs optimize LUT usage, they impose
additional preprocessing overhead for input data, complicating up-
dates and limiting their suitability for dynamic applications [10],
[16], [20]. BRAM-based CAMs, on the other hand, leverage the
large storage capacity of Block RAMs (BRAM) [3], [10], but BRAM
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Fig. 1: The Characteristics of current FPGA-based CAM designs.
Scalability denotes the achieved CAM size. Performance represents
the normalized search and update latency. Frequency is the maximum
achievable clock frequency. Integration demonstrates the level of easy
integration to an application. Multiple queries stand for the concurrent
support to multiple input queries.

blocks are designed for sequential access, requiring additional logic
for parallel comparisons, which reduces search performance and
achievable clock frequency [4], [17]. Hybrid-resource CAMs attempt
to balance the flexibility of LUTs with the storage efficiency of
BRAMs but encounter complex update processes due to the overhead
of managing multiple resource types [4], [9]. The Digital Signal
Processing (DSP) slices in FPGAs have been explored as the primary
resource for CAM design due to their superior achievable clock
frequency compared to LUT and ability to be configured as a logical
operation unit. Repurposing the DSP slice for CAM may also help us
to reduce the reliance on LUTs and BRAMs, alleviating resource con-
straints with enhanced performance. The existing DSP-based CAM
design has demonstrated benefits, such as higher operating frequency
and optimized data pathways. However, it remains challenged by
prolonged search latency, rendering it less suitable for data-intensive
applications [14]. Moreover, the intrinsic computational demands
associated with executing parallel comparisons within CAMs exacer-
bate existing challenges, rendering these designs suboptimal for data-
intensive applications that necessitate scalability, frequent updates,
and multiple concurrent query searches.

This paper presents a novel configurable design of high-
performance CAM with DSP slices as the primary resource. The
proposed CAM architecture addresses the need for flexible and
efficient data updates and searches in data-intensive applications
and also provides easy integration to accelerator systems. The main
contributions are listed as follows.

• Configurable DSP-based CAM architecture: We introduce a
fully parameterized CAM design that mainly uses DSP slice and
can be customized at different granularities across cell, block,
and unit levels.

• Multi-query support: Our CAM architecture supports multiple
content searches in parallel with an optimized search logic.

• Advantageous experimental results: Our proposed design on
FPGA demonstrates superior performance in different scales.

https://github.com/Xtra-Computing/DSP_CAM/


TABLE I: A survey of recent CAM designs on FPGA

Design Name Category Platform Max CAM Size Frequency Resource Utilization Latency (cycles) ||

(MHz) LUT BRAM DSP Update Search
Scale-TCAM [10] LUT XC7V2000T 4096 × 150 bits 139 322648 * 0 0 33 -

DURE [16] LUT Xilinx Virtex-6 1024 × 144 bits 175 35807 0 0 65† 1†
BPR-CAM [15] LUT XC6VLX760 1024 × 144 bits 111 15260 0 0 - 2
Frac-TCAM [20] LUT XC7V2000T 1024 × 160 bits 357 16384 0 0 38 -
HP-TCAM [19] BRAM Xilinx Virtex-6 512 × 36 bits 118 5326 56 0 - 5

PUMP-CAM [17] BRAM XC6VLX760 1024 × 140 bits 87 7516 80 0 129 -
IO-CAM [13] BRAM Intel Arria V 5ASTD5 8192 × 32 bits 135 19017 ‡ 2112§ 0 - -

REST-CAM [4] Hybrid Xilinx Kintex-7 72 × 28 bits 50 130 1 0 513 5
Preußer, et.al [14] DSP XCVU9P 1000 × 24 bits 350 2843 0 1022 - 42

Ours DSP U250 9728 × 48 bits 235 72178 4 9728 6 8

|| The latency is measured for a single end-to-end operation. * The number of LUT is calculated by the number of slices (80662) multiplied by four. †
The update and search latencies are measured on a single CAM block with dimensions of 512 x 36. ‡ The number of used ALM in Intel FPGA. § The
number of used M10K in Intel FPGA. - indicates the value is not reported in the literature.

• System case study: We demonstrate the effectiveness and inte-
grability of our proposed CAM design in the context of triangle
counting acceleration system in graphs, showcasing improved
efficiency and scalability.

The remainder of this paper is organized as follows. Section II
identifies the inefficiencies of current CAM on FPGAs for data-
intensive applications and motivates our proposed design. Section III
presents our proposed configurable DSP-based CAM architecture.
Section IV evaluates our design and demonstrates its advantage over
the existing ones. A case study with triangle counting on real-world
graphs is presented in Section V and Section VI concludes this paper.

II. BACKGROUND

CAMs can be categorized into Binary CAM, Ternary CAM
(TCAM), and Range-Matching CAM (RMCAM). Binary CAMs
perform exact-match searches using binary data (0s and 1s), making
them suitable for applications like cache memory tag matching where
precise data retrieval is essential [2], [3], [12], [18]. Ternary CAMs
(TCAMs) introduce a third state, the “don’t care” (X) condition,
allowing for partial or wildcard matching, and is widely used in IP
routing or packet redirection. Range-matching CAMs are designed to
match input data within specific numerical ranges, which is valuable
in applications like database indexing and firewall rule matching.
Recent representative designs are compiled in Table I. FPGAs possess
a unique capability to emulate all forms of CAM designs due
to their inherent logical representation functionality. However, the
pronounced variations in resource types available within FPGAs
necessitate categorizing CAM designs based on the primary resources
utilized: LUTs, BRAMs, DSPs, and combinations thereof.

A. Challenges When Facing Data-Intensive Applications

Data-intensive applications often require frequent data updates and
rapid data searches, which raise challenges for the underlying CAM
architecture. The challenges observed include:
Limited Scalability. In traditional CAM implementations that adopt
LUT and BRAM [10], [13], [15]–[17], as the size of the CAM
increases — both the number of entries and the width of each entry
— the number of required LUT or BRAM grows exponentially.
Consequently, the implemented timing drops significantly, which
become impractical for data-intensive tasks like graph processing.
High Search and Update Latency. Many CAM architectures [4],
[10], [16], [17], [20] are optimized for read-intensive operations with
infrequent updates, which is not suitable for applications that require
frequent data modifications. Frequent updates result in increased la-
tency and create bottlenecks that reduce the system’s data processing

efficiency. The slow update rates and the complexity of update logic
hinder the performance of applications that need immediate reflection
of data changes, such as dynamic graph algorithms.
Multiple Concurrent Queries. Multi-queries are an essential pro-
cessing pattern in data-intensive applications. However, CAMs on
FPGAs rely heavily on resources like Lookup Tables (LUTs) to
perform simultaneous comparisons across all stored entries, which
makes them incapable of dealing with multiple search requests from
different input data. Even in the most recent design that adopts DSP
as the processing resource, multi-query support remains unexplored.
System Integration Complexity. Data-intensive applications on
FPGAs commonly necessitate domain-specific architectures. In such
contexts, CAM implementations must coexist with other system com-
ponents to achieve overall accelerator functionality. Consequently, the
configurability and integrability of the CAM microarchitecture should
be explicitly considered during the design process.

B. Design Motivations

The challenges outlined above motivate a reevaluation of CAM
design on FPGA for data-intensive applications.
Leveraging DSP Blocks for better scalability. DSP blocks are
specialized units optimized for high-speed arithmetic and logic op-
erations. By repurposing the DSP slice for CAMs, we may reduce
reliance on LUTs and BRAMs, alleviating resource constraints and
enhancing performance.
Balancing update and search latency. Data-intensive applications
require more frequent data updates, which necessitates a more bal-
anced update and search logic path design.
Multi-query support. Runtime dynamic data path control in the
CAM unit is necessary to address the multiple search requests for
data-intensive applications.
Configurable architecture. The variation of the applications ne-
cessitates a flexible CAM architecture that can accommodate these
differing needs without completely redesigning the entire architecture.

In summary, using DSP blocks as the primary resource in our
CAM design effectively addresses resource utilization and scalability
issues found in traditional FPGA-based CAMs. Multi-query support
adds flexibility to accommodate dynamic data and application de-
mands, enhancing both efficiency and responsiveness. Furthermore,
a parameterized architectural design facilitates adaptation for broader
application acceptance.

III. CONFIGURABLE DSP-BASED CAM ARCHITECTURE

With the motivations above, our configurable CAM design on
FPGA adopts the DSP slice as the primary resource and is designed
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Fig. 2: DSP-based CAM cell.

hierarchically in a fully parameterized manner. The CAM cell,
configured using a DSP slice, provides basic data storage and data
comparison functionalities. Multiple CAM cells are grouped to form
a CAM block, which integrates data update and search logic, serving
as the core component for executing essential CAM operations. Our
proposed configurable CAM unit is constructed by combining mul-
tiple CAM blocks with additional logic for data updates and parallel
searches. This CAM unit can operate as multiple independent CAMs,
with each CAM sized at the granularity of a CAM block, providing
exceptional flexibility. The CAM unit also supports multiple search
queries across multiple grouped CAM blocks, significantly enhancing
processing throughput and parallelism.

A. Configurable CAM cell with DSP

The DSP48E2 [6] slice is designed to provide arithmetic processing
capacity, which contains an arithmetic unit, logic and comparison
unit, shift and preprocessing unit, registers, control, and configurable
logic, cascading and interconnection. Turning the DSP slice into a
CAM cell requires the configuration of the DSP block into logic
processing mode. Specifically, the operational mode of the DSP
slice is determined by configuring the ALUMODE and OPMODE
registers, as shown in Figure 2, enabling the slice to perform XOR
operations between the two 48-bit registers:

O = (A : B)⊕ C (1)

With this configuration, registers A and B in each DSP48E2 slice are
concatenated to provide a maximum 48-bit storage space for input
data, while register C is used to hold the search key during search
operations. For Ternary CAM (TCAM) and Range-Matching CAM
(RMCAM) functionality, the additional MASK function is employed
to handle partial matches and range checks. By setting specific bits in
the mask to "don’t care" (X) status, the DSP performs post-processing
after the XOR operation to identify matches based on the masked
conditions. However, in Range-Matching CAM, the representation is
limited to ranges where the start and end values are powers of 2. This
limitation arises from the bit-level granularity of the mask control,
restricting the range specifications’ flexibility. Table II summarizes
the MASK definitions and their effects for binary, ternary, and range-
matching CAMs. The mask is also used for the data bit width control,
where the unused data bits are masked out to simplify the data path.

TABLE II: MASK value for CAM type configuration

Type MASK value Behavior
BCAM All bits are zero All bits are compared

TCAM Active bits = 0,
ignored bits = 1

Bits with MASK = 1 are "don’t
care" bits

RMCAM Relevant bits = 0,
others = 1

Bits with MASK = 0 are selected
range
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Fig. 3: Architecture of DSP-based CAM block.

B. CAM block microarchitecture

A DSP-based CAM cell can not perform the update and search
operations as it only provides the data storage and comparison logic.
The design of a CAM block involves organizing multiple CAM cells
along with additional control logic to support search and update
operations. Specifically, a CAM block in our design includes a
configurable number of CAM cells, a DeMUX, an update and search
logic, and an output Encoder, as shown in Figure 3.

The input bus for the CAM block comprises both data bits and
control signals that include update, search, and reset. When a new
input data packet arrives, the DeMUX routes the data bits to the
update logic or the search logic based on the control signals. For
update operations, the update logic uses a mapping function based
on the Cell Address Controller to direct each data word (with storage
data width) in the input data bus to the appropriate CAM cell in the
block. Since the input data bits may consist of multiple storage-size
data words due to a larger customized input data width than the
storage data width in CAM cell, this approach enables the parallel
updating of multiple CAM cells in a single operation. For search
operations, the redundant bits in the input data bits are masked to
ensure that only one data word serves as the search key within the
CAM block. The search logic then broadcasts this key to all CAM
cells for parallel comparisons. The Encoder collects the match results
and generates the final output, supported by a configurable encoding
scheme suited to various addressing and management strategies.
When the reset signal is asserted, all stored contents in each CAM
cell are cleared.

C. CAM unit microarchitecture

The CAM unit consists of multiple CAM blocks, supplemented by
additional control and routing logic to facilitate multi-query opera-
tions. As illustrated in Figure 4, the overarching microarchitecture
includes a Routing Compute module and a Post-Router module,
alongside multiple CAM blocks. These components are encapsulated
by input and output interfaces that communicate with the user kernel.

1) CAM Group: We define a CAM group as a logical abstraction
that forms the foundation for executing search and update operations
within the CAM unit. A CAM group consists of multiple CAM blocks
and is not tied to the physical layout, enabling flexible configuration
and dynamic reassignment of resources. Let Ntotal denote the total
number of CAM blocks in the CAM unit and M the number of
CAM groups. Each group then contains N = Ntotal

M
blocks; M needs

to be divisible by N. The number of CAM groups M is configured
at runtime by the user kernel, thereby enabling the CAM unit to
dynamically adapt to varying workload demands, specifically catering
to multi-query parallelism requirements.

2) Update Process: During the update process, the Routing Table,
implemented as an array within the Routing Compute module, stores
the mapping relationships between Block IDs and Group IDs. This
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Fig. 4: Architecture of DSP-based CAM unit.

array shares the same data path as the input update data, where a
control signal is used to update the mapping configuration. Based on
the mapping relationship defined in the Routing Table, the input data
is replicated and directed to all M CAM groups, ensuring that the
update is applied globally. Subsequently, the update crossbar in the
Post-Router module routes the replicated data to the designated block
in each group. Within each CAM group, the Block Address Controller
sequentially assigns data to each block using a round-robin policy;
once the current block is full, the controller points to the next block
in the group.

3) Search Process: In the search process, each incoming search
key is first processed by the Routing Compute module, which
employs a mapping function based on the Routing Table to allocate
the key to the appropriate CAM group. Once a group is selected,
the search key is replicated N times (where N is the number of
blocks within that group) and broadcast to every block in the group,
thereby enabling parallel comparison across all blocks. The Post-
Router module then delivers the duplicated keys to the corresponding
blocks, initiating parallel search operations. With each search key
assigned to a distinct CAM group, the overall CAM unit is capable
of supporting up to M search queries per cycle.

4) Example: Consider the configuration shown in Figure 4, where
each CAM group consists of two blocks. During the update process,
each incoming data packet is duplicated across all M = Ntotal/2
groups and written sequentially: data is first stored in the first block
of each group, and upon reaching capacity, subsequent entries are
directed to the second block following a round-robin schedule. In
the search phase, the CAM unit supports up to M concurrent search
keys, each routed to a distinct CAM group. Within each group, the
key is broadcast to both blocks, enabling parallel comparison and
efficient multi-query processing.

D. Parameterized architectural components

To enable seamless integration into different applications, our
CAM unit is fully parameterized with different hierarchies of config-
urations. The configurations include cell-level, block-level, and unit-
level. As shown in Table III, parameters such as cell type, data width,
block size, unit size, and bus width are configured at the design stage,
ensuring optimal resource utilization and hardware compatibility. We
design the source file in templates where all the parameters can be
defined before the CAM unit is generated.

IV. CAM EVALUATIONS

To comprehensively evaluate the effectiveness of our proposed
parallel CAM design, metrics are analyzed at three different gran-
ularities: CAM cell, CAM block, and CAM unit. We assess per-
formance, efficiency, and scalability at each granularity to provide a

TABLE III: Configurable Parameters for CAM Unit

Granularity Parameter Description

CAM Cell Cell type The type of CAM: Binary, Ternary,
Range-matching.

Storage
Data

Width
Width of the stored data (≤ 48 bits).

Block Size Number of cells per CAM block.
CAM
Block

Block Bus
Width Data path width in CAM block.

Result
Encoding

Encoding scheme for search results
from multiple CAM cells.

CAM Unit Unit Size Number of CAM blocks per CAM unit.
Unit Bus

Width Data path width in CAM unit.

detailed understanding of the architecture’s characteristics. Across all
granularities of evaluation, the key metrics include:

• Latency: Measured in clock cycles, indicates the time required
for an end-to-end operation.

• Throughput: The number of operations (updates or searches)
performed per second.

• Resource Utilization: Quantifies the FPGA resources that are
consumed, including LUTs, FFs, DSP, and BRAMs.

• Scalability: Reflects the ability to adapt the design to a larger
size without significant performance degradation.

The experiments were conducted on an AMD Alveo U250 accelerator
card, an FPGA platform based on the UltraScale+ architecture. The
U250 features four DDR4 memory channels and a PCIe Gen3 x16
interface, providing ample external memory bandwidth for data-
intensive applications. The resources of the chip are collected in
Table IV. The results are collected through implementation using
Xilinx Vivado Design Suite v2021.2, and the CAM architecture was
implemented and deployed on the U250. Resource utilization metrics
include LUTs, BRAMs, and DSPs.

TABLE IV: Resource capacity of AMD Alveo U250

Resource LUTs Registers BRAM URAM DSP

Quantity 1,728K 3,456K 2,688 1,280 12,288

A. CAM Cell Evaluation

Taking advantage of the reconfigurability of the FPGA DSP
slice, our CAM cell is compact and flexible for different CAM
functionalities. The configuration of the OPMODE and ALUMODE
does not change the resource utilization of the memory cell. As shown
in Table V, the resource consumption, update, and search latency stay
the same for the configuration of Binary CAM cell, Ternary CAM
cell, and Range-matching CAM cells. This provides the basis for a
scalable and high-performance CAM unit design.

TABLE V: CAM Cell Evaluation

Metric Value
Storage Capacity 1 entry ≤ 48 bits
Update Latency 1 cycle
Search Latency 2 cycles

Resource Utilization 1 DSP, 0 LUT, 0 BRAM

B. CAM Block Evaluation

Due to the stable characteristic of our DSP-based CAM cell
design, at the granularity of the CAM block, we mainly focus on
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evaluating the block configuration with scaled numbers of CAM
cells for storage of data width no more than 48 bits. The results
are shown in Table VI. We set the size of the block to be power-of-
two values to maintain a hardware-friendly architecture, which are
also the commonly used values for the size of a cache line. Notably,
the Update Throughput and Search Throughput are measured in data
update or search operations per second, which is different from
the normally used processed packet per second. Our CAM design
maintains high frequency and stable update and search latency with
different size configurations. Specifically, when the size of the block
reaches 256, we added an additional buffer at the Encoder output to
optimize the implementation timing. It leads to an increased search
latency of 4 but does not harm the search throughput. Our LUT
utilization remains very low when compared to designs in Table I,
this leaves more resources for the other parts of the system.

TABLE VI: CAM Block Evaluation with different size

CAM size 32 64 128 256 512
Update Latency (cycle) 1 1 1 1 1
Search Latency (cycle) 3 3 3 4 4

Update Throughput (op/s) 4800 4800 4800 4800 4800
Search Throughput (op/s) 300 300 300 300 300

# of LUTs 694 745 808 1225 1371
Utilization(%) 0.05 0.05 0.05 0.07 0.08

# of DSP 32 64 128 256 512
Utilization(%) 0.26 0.52 1.04 2.08 4.17

BRAM Utilization 0 0 0 0 0
Frequency(MHz) 300 300 300 300 300

C. CAM Unit Evaluation

a) Scalability evaluation: To evaluate the effectiveness of our
proposed microarchitecture at managing the scaled number of CAM
blocks, except for the basic metrics, the evaluations are extended to
the performance of randomly updating and searching a single value in
the CAM unit. Specifically, the size of the CAM block is set to 256,
and the Input Bus Width is 512, which is to be compatible with the
interface width of the external DDR memory port in our evaluation
platform. The number of adopted DSP blocks increases when the
CAM size increases. We maintain the data to be 48 bits so all the
internal data paths are active.

The results are collected in Table VII. The required number of
LUT increases linearly when the size of the CAM unit increases,
this is due to the logic required by the data update and search logic.
With the given 11,508 DSPs on our platform, we can easily achieve a
CAM size that reaches 9K×48 bits, where the 79.25% of the DSPs
are adopted for this CAM unit but only 2.92% of the LUT resource
is used. As a result, we achieve a 254MHz clock frequency. The
update and search performance are collected in Table VIII, where the
data width is configured as 32 bits for wider adoption. The update
latency does not change when the CAM unit size changes, which
is mainly because of the simpler datapath for updates. The search
latency increases by one clock cycle when the CAM size is larger
than 2K, which is mainly due to the buffering in the encoder of
the CAM block to optimize the timing during implementation. The
update and search throughput only relate to the clock frequency since
the processes are pipelined with an initial interval of 1.

b) Comparison to the state-of-the-arts: We incorporate our
design with its maximum configuration into Table I, which includes
state-of-the-art designs at their respective maximum configurations.
It is worth noting that 4 BRAMs are utilized by the bus interfaces
for FIFOs, which we add to facilitate complete synthesis and imple-
mentation. Our CAM design exhibits superior scalability, occupying

TABLE VII: CAM Unit Configuration and Resource Utilization

CAM size LUT
Utilization

DSP
Utilization

Freq.
(MHz)

512 × 48 bits 2491 512 300
1024 × 48 bits 5072 1024 300
2048 × 48 bits 10167 2048 300
4096 × 48 bits 20330 4096 265
6144 × 48 bits 29385 6144 252
8192 × 48 bits 38191 8192 240
9728 × 48 bits 45244 9728 235

TABLE VIII: CAM Performance for 32-bit data with different sizes

CAM size 128 512 2048 4096 8192
Update Latency (cycle) 6 6 6 6 6
Search Latency (cycle) 7 7 8 8 8

Update Throughput (op/s) 4800 4800 4800 4064 3840
Search Throughput (op/s) 300 300 300 254 240

79.25% of the on-chip DSP resources while utilizing significantly
fewer LUTs. Additionally, when compared with existing DSP-based
CAM designs, the update and search latency of our proposed CAM
is well-balanced and more conducive to data-intensive applications.

V. CASE STUDY: TRIANGLE COUNTING WITH CAM

To demonstrate the effectiveness of our proposed CAM design,
we implement an accelerator that primarily relies on the CAM to
perform triangle counting. Furthermore, we conduct this evaluation
to highlight both the seamless integration of our CAM design into
the accelerator and the enhanced functionality enabled by the CAM.

A. Preliminary of triangle counting

Triangle counting is a fundamental operation in graph analytics,
widely used for calculating clustering coefficients and understanding
transitivity in networks across domains such as social sciences, biol-
ogy, and computer science. A typical edge-centric triangle counting
algorithm involves retrieving the adjacency lists of two connected
vertices and performing a set intersection to identify common neigh-
bors, as shown in Figure 5. Due to the compact storage format
of graph data, which are generally in the Compressed Sparse Row
(CSR) format, this operation relies heavily on set intersection on two
random length lists, a typical data-intensive task that poses significant
challenges to common address-based memory systems, particularly
for large-scale and irregular graph data. Two primary challenges arise
from this operation. First, the inherent sequential nature of the set-
intersection operation makes it difficult to perform efficient parallel
processing between two input sets. Second, due to the random lengths
of adjacency lists, traditional memory systems are poorly suited to the
unpredictable and frequently small sizes of adjacency lists, resulting
in under-utilization of on-chip memory resources. CAM is one of the
effective solutions to address the above challenges by enabling highly
parallel set intersection operations directly in memory. Consider two
adjacency lists with length n and m (n ≤ m) that require a set
intersection. The most commonly used method is the merge-based
method, which processes one comparison per cycle and updates
the list indices based on the comparison results, achieving a time
complexity of O(m + n). When CAM is applied to this operation,
it significantly reduces processing complexity by naturally enabling
parallel comparisons. For instance, if we store the longer list in CAM,
the total set intersection complexity becomes O(n).
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B. Integration of configurable CAM in triangle counting

We build a triangle counting accelerator mainly based on our
proposed CAM design, as shown in Figure 6. Specifically, the storage
data width is set to 32 bits, the CAM cell is configured to be binary,
the block size is set to 128, the system input bus width is 512, and the
Encoder in the CAM block is configured to a priority-based encoding
scheme. There are additional modules as user kernels to perform the
other related functionality for triangle counting, including Load edge,
Load vertex’s offset and length, and Load adjacent lists modules.

All these graph data are stored in the off-chip memory. The
input graph is represented in the CSR format, where each vertex
is associated with an offset and length pointing to its neighbors in a
column list. The user kernels in the accelerator processes each edge
(Va, Vb) in the graph by first loading the offset index and the length of
the lists associated with each vertex, then loading the adjacency lists
<Lista, Listb>. Before performing the set intersection, the longer
list (Lista) is determined and loaded into the generated CAM unit,
and the vertices from the shorter one (Listb) are used as the search
keys. The number of groups is decided by the length of the longer
list. The retrieving process performs as follows: a search operation
is performed for each vertex in the shorter list. If there is a match,
the number of the triangle is increased by one.

C. Performance evaluation

Since our CAM design provides the grouping mechanism, the
adjacent list is duplicated in all groups, enabling a parallel search
of the M nodes from the other list. To note here, a list with
a length less than 128 occupies the entire CAM block for easy
implementation. We conduct a performance comparison against the
official implementation of the triangle counting accelerator provided
in the AMD Vitis library [1]. This implementation, which utilizes an
optimized merge-based set intersection approach, serves as the base-
line for our evaluation. To ensure a fair and consistent comparison, we
replicate the baseline [1] implementation on the same platform, AMD
Alveo U250, under identical operating conditions. Our CAM-based

TABLE IX: Execution time (ms) of Traditional TC and CAM-Based
Approaches

Dataset Triangles Ours Baseline [1] Speedup
facebook_combined 1,612,010 5.054 18.7 3.70x

amazon0302 717,719 23.086 89.5 3.88x
amazon0601 3,986,507 71.210 230.3 3.23x
as20000102 6,584 0.422 7.4 17.54x
cit-Patents 7,515,023 415.808 800.0 1.92x

ca-cit-HepPh 195,758,685 1,526.05 5,361.1 3.51x
roadNet-CA 120,676 62.058 108.8 1.75x
roadNet-PA 67,150 34.559 88.7 2.57x
roadNet-TX 82,869 42.323 96.8 2.29x

soc-Slashdot0811 551,724 29.402 259.7 8.83x

triangle counting accelerator is configured to match the constraints
of the baseline design, which is limited to a single DDR channel.
Accordingly, our CAM unit is set with 2K entries to remain within
a single super logic region (SLR) since the baseline design is also
implemented inside a single SLR.

D. Result Analysis

The performance evaluation of our triangle counting accelerator
across various graph datasets [11] is summarized in Table IX. The
baseline design [1], representing the current state-of-the-art FPGA-
based approach for triangle counting, utilizes a fine-grained pipeline
optimized to minimize pipeline bubbles. Nevertheless, its overall
performance remains limited due to the merge-based set intersection
method, which inherently enforces sequential processing. In contrast,
our CAM-based accelerator significantly reduces this sequential bot-
tleneck by enabling parallel execution of set intersection operations,
achieving an average speedup of 4.92× compared to the baseline.
These results clearly demonstrate the efficacy of our parallel CAM-
based approach in overcoming the limitations imposed by sequential
set intersection methods.

In summary, the parameterized design of our proposed CAM
architecture enables easy integration of it into the triangle counting
accelerator. The performance results of the triangle counting acceler-
ator based on our CAM design demonstrate significant improvement
over the existing optimized baseline design under the same memory
and platform condition.

VI. CONCLUSION

This paper introduces a novel CAM architecture leveraging DSP
slices in FPGAs to address the limitations of traditional LUT and
BRAM-based designs when facing data-intensive applications. By
repurposing DSP blocks, the proposed architecture achieves high
scalability, low update and search latency, efficient resource utiliza-
tion, and easy system integration. The design supports configurable
granularity at cell, block, and unit levels, enabling adaptability to
diverse data-intensive applications. Experimental results demonstrate
the superior performance and scalability of the architecture, with a
triangle counting case study showcasing its practical effectiveness.
This work establishes a foundation for integrating DSP-based CAMs
into high-performance FPGA systems, opening new avenues for
optimizing data-intensive tasks. Our implementation is open-sourced
at: https://github.com/Xtra-Computing/DSP_CAM/.
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